Tetrahedron Letters, Vol.25, No.1, pp 73 - 76, 1984 Printed in Great Britain

CHARACTERIZATION OF 4-(2,3-DIPHENYLCYCLOPROPENYLIDENE)CYCLOHEXA-2,5-DIENONE.¹⁾ HIGHLY POLARIZED 6,7-DIPHENYL[3.6]QUINAREN-3-ONE

Kazuko Takahashi, Keiichi Ohnishi, and Kahei Takase Department of Chemistry, Faculty of Science, Tohoku University, Sendai, 980 Japan

Summary: The title quinarenone 2 has a pronounced contribution of the dipolar resonance structure to the ground state, and the three-membered ring of 2 is more diatropic than that of diphenylcyclopropenone. The quinarenone 2 exists in equilibrium with its oligomer in solution. The excited state properties of 2 have also been described.

The title quinarenone $\underline{2}$,²⁾ a benzene ring-inserted type compound of diphenylcyclopropenone $\underline{1}$, is one of the most fundamental key compounds in inserted type annulenones. Although $\underline{2}$ was synthesized by A. S. Kende for the first time in 1963,³⁾ any physical data to clarify its electronic structure have not yet been known so far because of its intractability. We have now reinvestigated this undefined compound $\underline{2}$ and have characterized that $\underline{2}$ has the largest contribution of π charge transfer interaction to the ground state in the annulenone and inserted type annulenone series known so far. The kinetic properties closely related to difficulty in handling 2 have also been clarified. These are reported in the present article.

Cyclopropenium ion $\underline{3}^{4}$ (5.4 X 10^{-3} mmol), conveniently available according to our improved procedure by treating 4-(diphenylcyclopropenyl)-t-butoxybenzene⁵) with triphenylmethyl fluoroborate in dichloromethane at -30 °C, followed by warming to room temperature, was allowed to react with an equimolar amount of diisopropylethylamine in dichloromethane-d₂ (0.3 ml) at -40 °C under argon atmosphere to afford a light orange solution (A). The solution (A) reproduced quantitatively 3 on treating with boric acid.

Attempts to isolate $\underline{2}$ having failed, the existence of $\underline{2}$ was clearly evidenced by 200 MHz ¹H NMR spectral determination of the above-described solution (A) at +5 °C, as given in Figure 1. Quinarenone $\underline{2}$ was shown to exist in equilibrium with oligomer $\underline{4}$, ⁶⁾ from the off-resonance decoupling and temperature variation experiments (vide post). Oligomer $\underline{4}$ separated out as a colorless solid when $\underline{3}$ was deprotonated in acetonitrile. On mass spectral analysis, $\underline{4}$ exhibited a $[M+2]^+$ peak characteristic to $\underline{2}$ at m/e 284 together with other peaks associated with the subsequent loss of CO and acetylene fragments, indicating that depolymerization occurred under conditions of mass analysis. The structural confirmation for $\underline{4}$ was also deduced from the ¹H NMR and IR spectra closely similar to those of 4-(diphenylcyclopropenyl)-t-butoxy-

Table 1. ¹ H NMR Spectral Data of <u>1</u> , <u>2</u> , and <u>3</u> . (200 MHz, δ in ppm, <u>J</u> in Hz)												
Compd.	Solvent		-membd. H-1,5			enyl Substi meta,para		⊿ð meta,para				
<u>1</u>	CD2C12				8.00	7.63	-0.32	-0.22				
2	CD2C12	6.63	8.07	9.5	8.32	7.85	0.00	0.00				
<u>3</u>	MeCN	7.31	8.52	9.0	8.56	7.97	+0.24	+0.12				

benzene except the signals originated from the t-butyl group.

The 1 H NMR parameters of 2 (Table 1) indicate a pronounced contribution of charge separated resonance formula 2b to the ground electronic strucutre. The signals for H-2,4 and H-1,5 appeared at relatively high and low fields, respectively, the chemical shift difference between them amounting to 1.44 ppm. The value of J1,2 (9.5 Hz) in 2 is 0.5 Hz less than the corresponding one of p-benzoquinone methide (10.0 Hz). The proton signals of 6,7-diphenyl groups of 2 appear substantially at lower field than the corresponding ones of 1,2-diphenylcyclopropene (18 for ortho-H is 0.62 ppm, 18 for meta, para-H is 0.47 ppm). The chemical shifts of the former are not so different from those of 3 ($\varDelta\delta$ for ortho-H is 0.24 ppm, $\varDelta\delta$ for meta,para-H is 0.12 ppm). It is also noteworthy that the ortho and meta,para phenyl proton signals of 2 appear at lower field by 0.32 and 0.22 ppm than the corresponding ones of 1, respectively. This phenomenon is clearly responsible for a marked tendency for aromatization of the central six-membered ring which stabilizes significantly resonance formula 2b and destabilizes 2a.⁷⁾ The chemical shifts of phenyl protons of 2 are 0.76 ~ 0.61 ppm downfield from those of tetraphenyltriafulvene.⁸⁾ Thus the conjugative interaction between the carbonyl and the terminal odd-membered ring appears to be most significant in 2 among the annulenones and inserted type annulenones reported so far.9)

The quinarenone 2 is not considered to coexist with oligomer 4 in a highly dilute solution for electronic spectral measurements because of the high absorption intensity of the band (E2) at around 390 nm (Fig. 2).¹⁰⁾ The two absorption bands El and E2 of 2 assigned to the $\pi_s \rightarrow \pi_a^*$

Table 2	. Calcu	lated Tra	nsition 1	Energies, 1⁄E(eV)	and Oscilla	tor Streng	th f of <u>2</u>
Method	lethod Band Theoret ⊿E (eV) f		heoretica f	al Assignment	Experimental (in dioxane ⊿E (eV) ≳max, nm log e		
PPP-CI	El	2.48	0.177	$\pi_{11} - \pi_{12}$	2.30	540	3.3
	E2	3.35	1.607	$\pi_{11} \rightarrow \pi_{13}$	3.13	396	4.7

and $\pi_s - \pi_s^*$ transitions, respectively, by the CNDO/S and PPP-CI methods (Table 2), showed blue shifts of about 60 nm and 12 nm, respectively, on changing the solvent from benzene to to acetonitrile.

By examining the π AO coefficients for the frontier orbitals concerned (Fig. 3),¹¹⁾ the El band is considered to be a C-T band originated from the transition between the phenoxy chromophore as a donor and the diphenylcyclopropenium ion as an acceptor.¹²⁾ Thus the intense El band would be a good indication for the strong electron donating and electron accepting abilities of the three-membered ring.¹³⁾

The strong conjugative interaction in 2 is also well reproduced by the MO energy diagram (π_a : -14.16, π_s : -8.30, π_a^* : +0.94, π_s^* : +2.11 eV) which resulted from the interaction between the anti-bonding MO's of the diphenylcyclopropenium ion (π_a^* : -3.12, π_s^* : -2.45 eV) and the bonding MO's of the phenoxy chromophore (π_a : -8.76, π_s : -2.87 eV), where the π_s^* of the diphenylcyclopropenium ion lies very closely to the π_s of the phenoxy chromophore.¹⁴)

The compound $\underline{2}$ collapsed on heating above 30 °C in a dichloromethane solution. At lower temperatures in the same solution $(1.8 \times 10^{-2} \text{ mol/l})$, the ratio of $\underline{2} : \underline{4}$ determined from the integration areas of the two doublets at 6.63 (H-2,4 of $\underline{2}$) and 7.13 ppm (H-2,4 of $\underline{4}$) were 1 : 1 at 25 °C, 1 : 1.8 at 15 °C, 1 : 2.5 at 5 °C, and 1 : 3.5 at -10 °C. The compound $\underline{4}$ became a major component below -60 °C. The enthalpy- $(\underline{A}H^\circ)$ and the entropy- $(\underline{A}S^\circ)$ changes for the oligomerization reaction of $\underline{2}$ are thus -5.06 Kcal/mol and -16.6 e.u., respectively. The activation energy $(\underline{A}H^*)$ for the oligomerization of $\underline{2}$ is too small to isolate monomeric $\underline{2}$ in solid state from the solution. Any steric reason raising the potential energy of the ground state is not conceivable in $\underline{2}$ because the molecule is assumed to be sufficiently planar. The observed high reactivity of $\underline{2}$ would be mainly attributable to the highly stabilized aromatic zwitterionic transition state $\underline{2}^*$, through which $\underline{2}$ oligomerizes in a solution of higher concentration, and also supplementarily attributable to the ground state of high dipolarity.

Acknowledgment: We thank Dr. Akio Tajiri, Chemical Institute of Non-aqueous Solutions, Tohoku University, for his help in using the PPP-CI program.

References and Notes

- Cyclic Cross-conjugated Hydrocarbons having an Inserted p-Quinonoid Ring XIV. Part XIII: K. Takahashi, K. Nishijima, N. Makino, K. Takase, and S. Katagiri, Chem. Lett., <u>1982</u>, 1895.
- The name "quinarenone" is used for the compound carrying a carbonyl group in a quinarene nucleus. For the name "quinarene", see K. Takahashi et al., Bull. Chem. Soc. Jpn., <u>47</u>, 2272 (1974); Tetrahedron, 30, 2191 (1974).
- 3. A. S. Kende, J. Am. Chem. Soc., 85, 1882 (1963).
- 4. The compound <u>3</u>: greenish yellow needles, mp. 214~5 °C (decomp.) from acetonitrile; IR (KBr) 3440~3280, 1835, 1600, 1580, 1410, 1290, 1163, and 1077 cm⁻¹; UV-VIS (MeCN) λ max 272 nm (log € 4.27), 342 (4.78); ¹H NMR (Table 1); ¹³C NMR 50.3 MHz (in CD₃CN) (∂ppm) 153.43 (C-6,7), 154.62 (C-8), 167.77 (C-3), 118.68 (C-2,4), 140.69 (C-1,5), 112.33 (C-9), 121.39 (Ph-ipso), 136.32 (Ph-ortho), 131.40 (Ph-meta), 138.74 (Ph-para); Anal. Found: C 68.03, H 4.15. Calcd. for C_{21H15}OBF₄: C 68.14, H 4.08%.
- 5. Colorless oil MS m/e 340 (M⁺, 3.3%), 320 (100%); ¹H NMR 60 MHz (in CDCl₃) (§ ppm) 1.35 (s, Bu^t), 3.19 and 3.52 (two s, 1H, cyclopropene), 6.87~7.70 (m, 14H). Preparation of this compound is as follows: p-Styryl-t-butoxybenzene [colorless oil, 82% yield, § in CDCl₃ 1.30 and 1.33 (two s, Bu^t), 6.43~7.50 (m, 11H, other protons)], obtained by the Wittig reaction of the corresponding aldehyde, was allowed to react with 1.2 equiv. of chlorophenyldi-azirine in benzene under reflux (1.5 h) to give p-(2-chloro-2, 3-diphenylcyclopropyl)-t-butoxybenzene [colorless oil, 67% yield, § in CDCl₃ 1.24, 1.33, and 1.36 (three s, Bu^t), 3.03~3.27 (m, 2H, cyclopropane), 6.73~7.67 (m, 14H, other protons)]. Dehydrochlorination of the cyclopropane was achieved by the treatment with 1.2 equiv. of potassium t-butoxide in THF at 0 °C (30 min), then at room temperature (15 min).
- 6. Oligomer 4: mp. 152~154 °C, MS (25 eV, 160 °C) m/e 284 (40%), 283 (5%), 256 (100%), 228 (69%); ¹H NMR 200 MHz (in CD₂Cl₂) (∂ppm) 7.13 (d, 2H, J=9.0 Hz, H-2,4), 7.64 (d, 2H, J=9.0 Hz, H-1,5), 7.72 (mc, 2H, Ph-ortho), 7.28~7.55 (mc, 8H, Ph-meta,para); IR (KBr) 3060, 1840, 1810, 1600, 1505, 1415, 1245, 1170, 1120, 960, 840, 765, 692 cm⁻¹; Anal. Found: C 87.65, H 5.10, Calcd. for C₂₁H₁₄O¹/3H₂O: C 87.47, H 5.18%.
- 7. This sort of conjugation enhancement induced by the inserted six-membered ring is seen also in the [3.6.5]- and [5.6.7]-quinarene systems: K. Takahashi, F. Ishikawa, and K. Takase, Tetrahedron Lett., 1976, 4655; K. Takahashi, and K. Takase, Tetrahedron Lett., 1975, 245.
- 8. K. Komatsu, T. Moriyama, T. Nishiyama, and K. Okamoto, Tetrahedron, 37, 721 (1981).
- Z. Yoshida, H. Konishi, "Atarashii Hokozoku-kei no Kagaku", Kagaku Sosetsu, No 15, (1977), Chapter 3, Ed., The Chemical Society of Japan; S. Ebine, J. Tsunetsugu, and M. Sato, J. Synthetic Org. Chem. Jpn., vol. 31, No. 12, 983 (1973).
- 10. 2: UV-VIS (MeCN) λ max 275 nm (log ε 4.41), 372 sh (4.58), 388 (4.79), 476 sh (3.50).
- 11. There is no crucial difference in these MO descriptions between the PPP and CNDO/2 methods.
- 12. It has been reported that <u>1</u> shows an intramolecular C-T band: E. Ohsawa, K. Kitamura, and Z. Yoshida, J. Am. Chem. Soc., 89, 3814 (1967).
- 13. See also the subsequent paper in this series, Part XV.
- 14. Eigenvalues are calculated by the CNDO/2 method.

(Received in Japan 9 September 1983)